R Dataset / Package robustbase / biomassTill


On this R-data statistics page, you will find information about the biomassTill data set which pertains to Biomass Tillage Data. The biomassTill data set is found in the robustbase R package. You can load the biomassTill data set in R by issuing the following command at the console data("biomassTill"). This will load the data into a variable called biomassTill. If R says the biomassTill data set is not found, you can try installing the package by issuing this command install.packages("robustbase") and then attempt to reload the data. If you need to download R, you can go to the R project website. You can download a CSV (comma separated values) version of the biomassTill R data set. The size of this file is about 2,203 bytes.

Biomass Tillage Data


An agricultural experiment in which different tillage methods were implemented. The effects of tillage on plant (maize) biomass were subsequently determined by modeling biomass accumulation for each tillage treatment using a 3 parameter Weibull function.

A datset where the total biomass is modeled conditional on a three value factor, and hence vector parameters are used.




A data frame with 58 observations on the following 3 variables.


Tillage treatments, a factor with levels


a no-tillage system with plant residues removed


a no-tillage system with plant residues retained


a conventionally tilled system with residues incorporated


the development stage of the maize crop. A DVS of 1 represents maize anthesis (flowering), and a DVS of 2 represents physiological maturity. For the data, numeric vector with 5 different values between 0.5 and 2.


accumulated biomass of maize plants from each tillage treatment.


the same as Biomass, but with three values replaced by “gross errors”.


From Strahinja Stepanovic and John Laborde, Department of Agronomy & Horticulture, University of Nebraska-Lincoln, USA


## With long tailed errors
xyplot(Biomass ~ DVS | Tillage, data = biomassTill, type=c("p","smooth"))
## With additional 2 outliers:
xyplot(Biom.2 ~ DVS | Tillage, data = biomassTill, type=c("p","smooth"))### Fit nonlinear Regression models: -----------------------------------## simple starting values, needed:
m00st <- list(Wm = rep(300,  3),
               a = rep( 1.5, 3),
               b = rep( 2.2, 3))robm <- nlrob(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),
              data = biomassTill, start = m00st, maxit = 200)
##                                               -----------
summary(robm) ## ... 103 IRWLS iterations
plot(sort(robm$rweights), log = "y",
     main = "ordered robustness weights (log scale)")
mtext(getCall(robm))## the classical (only works for the mild outliers):
cl.m <- nls(Biomass ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),
            data = biomassTill, start = m00st)## now for the extra-outlier data: -- fails with singular gradient !!
rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),
              data = biomassTill, start = m00st)
## use better starting values:
m1st <- setNames(as.list(as.data.frame(matrix(
                coef(robm), 3))),
                c("Wm", "a","b"))
try(# just breaks a bit later!
rob2 <- nlrob(Biom.2 ~ Wm[Tillage] * (-expm1(-(DVS/a[Tillage])^b[Tillage])),
              data = biomassTill, start = m1st, maxit= 200, trace=TRUE)
)## Comparison  {more to come} % once we have  "MM" working...
rbind(start = unlist(m00st),
      class = coef(cl.m),
      rob   = coef(robm))

Dataset imported from https://www.r-project.org.

Title Authored on Content type
OpenIntro Statistics Dataset - dream August 9, 2020 - 12:25 PM Dataset
OpenIntro Statistics Dataset - winery_cars August 9, 2020 - 2:38 PM Dataset
R Dataset / Package HSAUR / toothpaste March 9, 2018 - 1:06 PM Dataset
R Dataset / Package HSAUR / pottery March 9, 2018 - 1:06 PM Dataset
R Dataset / Package HistData / Guerry March 9, 2018 - 1:06 PM Dataset
<iframe src="https://r-data.pmagunia.com/iframe/r-dataset-package-robustbase-biomasstill.html" frameBorder="0" width="100%" height="307px" />
Attachment Size
dataset-92265.csv 2.15 KB
Dataset License
GNU General Public License v2.0
Documentation License
GNU General Public License v2.0

This documentation is licensed under GPLv3 or later.